non-abelian, soluble, monomial
Aliases: C24⋊4D15, C5⋊(C22⋊S4), C22⋊(C5⋊S4), (C2×C10)⋊2S4, C22⋊A4⋊3D5, (C23×C10)⋊6S3, (C5×C22⋊A4)⋊2C2, SmallGroup(480,1201)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C5×C22⋊A4 — C24⋊4D15 |
C1 — C22 — C24 — C23×C10 — C5×C22⋊A4 — C24⋊4D15 |
C5×C22⋊A4 — C24⋊4D15 |
Subgroups: 1084 in 112 conjugacy classes, 13 normal (7 characteristic)
C1, C2 [×5], C3, C4 [×3], C22 [×3], C22 [×11], C5, S3, C2×C4 [×3], D4 [×6], C23 [×5], D5, C10 [×4], A4 [×4], C15, C22⋊C4 [×3], C2×D4 [×3], C24, Dic5 [×3], D10 [×3], C2×C10 [×3], C2×C10 [×8], S4 [×3], D15, C22≀C2, C2×Dic5 [×3], C5⋊D4 [×6], C22×D5, C22×C10 [×4], C22⋊A4, C5×A4 [×4], C23.D5 [×3], C2×C5⋊D4 [×3], C23×C10, C22⋊S4, C5⋊S4 [×3], C24⋊2D5, C5×C22⋊A4, C24⋊4D15
Quotients:
C1, C2, S3, D5, S4 [×3], D15, C22⋊S4, C5⋊S4 [×3], C24⋊4D15
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e15=f2=1, eae-1=fbf=ab=ba, ac=ca, ad=da, af=fa, bc=cb, bd=db, ebe-1=a, fcf=ede-1=cd=dc, ece-1=d, df=fd, fef=e-1 >
(1 38)(2 29)(3 35)(4 26)(5 32)(6 17)(7 23)(8 14)(9 20)(10 11)(12 22)(13 18)(15 25)(16 21)(19 24)(27 37)(28 33)(30 40)(31 36)(34 39)
(1 33)(2 39)(3 30)(4 36)(5 27)(6 12)(7 18)(8 24)(9 15)(10 21)(11 16)(13 23)(14 19)(17 22)(20 25)(26 31)(28 38)(29 34)(32 37)(35 40)
(1 38)(2 29)(3 35)(4 26)(5 32)(6 22)(7 13)(8 19)(9 25)(10 16)(11 21)(12 17)(14 24)(15 20)(18 23)(27 37)(28 33)(30 40)(31 36)(34 39)
(1 28)(2 34)(3 40)(4 31)(5 37)(6 12)(7 18)(8 24)(9 15)(10 21)(11 16)(13 23)(14 19)(17 22)(20 25)(26 36)(27 32)(29 39)(30 35)(33 38)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 6)(2 10)(3 9)(4 8)(5 7)(11 29)(12 28)(13 27)(14 26)(15 40)(16 39)(17 38)(18 37)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)(25 30)
G:=sub<Sym(40)| (1,38)(2,29)(3,35)(4,26)(5,32)(6,17)(7,23)(8,14)(9,20)(10,11)(12,22)(13,18)(15,25)(16,21)(19,24)(27,37)(28,33)(30,40)(31,36)(34,39), (1,33)(2,39)(3,30)(4,36)(5,27)(6,12)(7,18)(8,24)(9,15)(10,21)(11,16)(13,23)(14,19)(17,22)(20,25)(26,31)(28,38)(29,34)(32,37)(35,40), (1,38)(2,29)(3,35)(4,26)(5,32)(6,22)(7,13)(8,19)(9,25)(10,16)(11,21)(12,17)(14,24)(15,20)(18,23)(27,37)(28,33)(30,40)(31,36)(34,39), (1,28)(2,34)(3,40)(4,31)(5,37)(6,12)(7,18)(8,24)(9,15)(10,21)(11,16)(13,23)(14,19)(17,22)(20,25)(26,36)(27,32)(29,39)(30,35)(33,38), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,6)(2,10)(3,9)(4,8)(5,7)(11,29)(12,28)(13,27)(14,26)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)>;
G:=Group( (1,38)(2,29)(3,35)(4,26)(5,32)(6,17)(7,23)(8,14)(9,20)(10,11)(12,22)(13,18)(15,25)(16,21)(19,24)(27,37)(28,33)(30,40)(31,36)(34,39), (1,33)(2,39)(3,30)(4,36)(5,27)(6,12)(7,18)(8,24)(9,15)(10,21)(11,16)(13,23)(14,19)(17,22)(20,25)(26,31)(28,38)(29,34)(32,37)(35,40), (1,38)(2,29)(3,35)(4,26)(5,32)(6,22)(7,13)(8,19)(9,25)(10,16)(11,21)(12,17)(14,24)(15,20)(18,23)(27,37)(28,33)(30,40)(31,36)(34,39), (1,28)(2,34)(3,40)(4,31)(5,37)(6,12)(7,18)(8,24)(9,15)(10,21)(11,16)(13,23)(14,19)(17,22)(20,25)(26,36)(27,32)(29,39)(30,35)(33,38), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,6)(2,10)(3,9)(4,8)(5,7)(11,29)(12,28)(13,27)(14,26)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30) );
G=PermutationGroup([(1,38),(2,29),(3,35),(4,26),(5,32),(6,17),(7,23),(8,14),(9,20),(10,11),(12,22),(13,18),(15,25),(16,21),(19,24),(27,37),(28,33),(30,40),(31,36),(34,39)], [(1,33),(2,39),(3,30),(4,36),(5,27),(6,12),(7,18),(8,24),(9,15),(10,21),(11,16),(13,23),(14,19),(17,22),(20,25),(26,31),(28,38),(29,34),(32,37),(35,40)], [(1,38),(2,29),(3,35),(4,26),(5,32),(6,22),(7,13),(8,19),(9,25),(10,16),(11,21),(12,17),(14,24),(15,20),(18,23),(27,37),(28,33),(30,40),(31,36),(34,39)], [(1,28),(2,34),(3,40),(4,31),(5,37),(6,12),(7,18),(8,24),(9,15),(10,21),(11,16),(13,23),(14,19),(17,22),(20,25),(26,36),(27,32),(29,39),(30,35),(33,38)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,6),(2,10),(3,9),(4,8),(5,7),(11,29),(12,28),(13,27),(14,26),(15,40),(16,39),(17,38),(18,37),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31),(25,30)])
Matrix representation ►G ⊆ GL8(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 60 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 60 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 60 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 60 | 1 | 0 |
30 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
49 | 42 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
24 | 27 | 0 | 0 | 0 | 0 | 0 | 0 |
51 | 37 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[30,49,0,0,0,0,0,0,12,42,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0],[24,51,0,0,0,0,0,0,27,37,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
Character table of C24⋊4D15
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 15A | 15B | 15C | 15D | |
size | 1 | 3 | 3 | 3 | 6 | 60 | 32 | 60 | 60 | 60 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | orthogonal lifted from D15 |
ρ7 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | orthogonal lifted from D15 |
ρ8 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | orthogonal lifted from D15 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | orthogonal lifted from D15 |
ρ10 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | -1 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ11 | 3 | -1 | 3 | -1 | -1 | -1 | 0 | 1 | -1 | 1 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ12 | 3 | -1 | -1 | 3 | -1 | -1 | 0 | -1 | 1 | 1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ13 | 3 | 3 | -1 | -1 | -1 | 1 | 0 | -1 | -1 | 1 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ14 | 3 | -1 | 3 | -1 | -1 | 1 | 0 | -1 | 1 | -1 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ15 | 3 | -1 | -1 | 3 | -1 | 1 | 0 | 1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ16 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 6 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C22⋊S4 |
ρ17 | 6 | 6 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | -3+3√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ18 | 6 | 6 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | -3-3√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ19 | 6 | -2 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 1-√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ20 | 6 | -2 | -2 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | -3-3√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ21 | 6 | -2 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 1+√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ22 | 6 | -2 | -2 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | -3+3√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ23 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 3ζ53-ζ52 | 1-√5/2 | 3ζ54-ζ5 | 1-√5/2 | -ζ54+3ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -ζ53+3ζ52 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 3ζ54-ζ5 | 1+√5/2 | -ζ53+3ζ52 | 1+√5/2 | 3ζ53-ζ52 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -ζ54+3ζ5 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | -ζ54+3ζ5 | 1+√5/2 | 3ζ53-ζ52 | 1+√5/2 | -ζ53+3ζ52 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 3ζ54-ζ5 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | -ζ53+3ζ52 | 1-√5/2 | -ζ54+3ζ5 | 1-√5/2 | 3ζ54-ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 3ζ53-ζ52 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
In GAP, Magma, Sage, TeX
C_2^4\rtimes_4D_{15}
% in TeX
G:=Group("C2^4:4D15");
// GroupNames label
G:=SmallGroup(480,1201);
// by ID
G=gap.SmallGroup(480,1201);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,-2,2,57,506,1683,850,1054,1586,10085,7572,5886,2953]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^15=f^2=1,e*a*e^-1=f*b*f=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=a,f*c*f=e*d*e^-1=c*d=d*c,e*c*e^-1=d,d*f=f*d,f*e*f=e^-1>;
// generators/relations